首页> 外文OA文献 >Optimal investment and consumption in a Black--Scholes market with L\'evy-driven stochastic coefficients
【2h】

Optimal investment and consumption in a Black--Scholes market with L\'evy-driven stochastic coefficients

机译:Black - scholes市场的最优投资和消费   L \'evy驱动的随机系数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In this paper, we investigate an optimal investment and consumption problemfor an investor who trades in a Black--Scholes financial market with stochasticcoefficients driven by a non-Gaussian Ornstein--Uhlenbeck process. We assumethat an agent makes investment and consumption decisions based on a powerutility function. By applying the usual separation method in the variables, weare faced with the problem of solving a nonlinear (semilinear) first-orderpartial integro-differential equation. A candidate solution is derived via theFeynman--Kac representation. By using the properties of an operator defined ina suitable function space, we prove uniqueness and smoothness of the solution.Optimality is verified by applying a classical verification theorem.
机译:在本文中,我们研究了在非高斯Ornstein-Uhlenbeck过程驱动下具有随机系数的Black-Scholes金融市场交易的投资者的最优投资和消费问题。我们假设一个代理根据权力效用函数做出投资和消费决策。通过在变量中应用通常的分离方法,人们面临着求解非线性(半线性)一阶积分微分方程的问题。候选解决方案是通过Feynman-Kac表示得出的。通过使用在合适的函数空间中定义的算子的性质,我们证明了解的唯一性和光滑性。通过应用经典的验证定理来验证最优性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号